Системы управления двигателем и снижения токсичности отработавших газов
Общая информация
Функциональная схема систем управления двигателем/снижения токсичности отработавших газов (модели 2.0 и 2.5 л, оборудованные системой диагностики OBD II)Расшифровку аббревиатур см. на предыдущей иллюстрации |
Более подробная информация по системам управления двигателем и снижения токсичности отработавших газов Вашего автомобиля может быть получена в представительском отделении или на фирменной станции техобслуживания Subaru. |
Схема прокладки шлангов может быть приведена на отдельной шильде. Принцип функционирования систем управления двигателем/снижения токсичности отработавших газов представлен на иллюстрациях. |
Не забывайте о дополнительных федеральных гарантийных обязательствах, под которые попадают компоненты систем снижения токсичности и управления работой двигателя. Прежде чем приступать к выполнению каких-либо процедур по ремонту узлов и деталей данных систем, проконсультируйтесь об условиях соблюдения этих обязательств в представительском отделении компании Subaru. |
Схема управления параметрами зажигания на моделях 3.0 л
При управлении зажиганием также используется интеллектуальная функция (функция быстрого распознавания), в которой записанные в память ECM данные сравниваются с информацией, поступающей от информационных датчиков и датчиков-выключателей. Так, при выборе момента зажигания для любых условий функционирования двигателя ECM обрабатывает информацию о выходной мощности силового агрегата, расходе топлива, составе отработавших газов и пр. Во время запуска двигателя всегда имеют место флуктуации его оборотов, ввиду чего модуль управления не способен адекватно контролировать угол опережения зажигания, поэтому на данный период угол принудительно выставляется на 10° перед ВМТ по специальному сигналу «10°» датчика CKP. После осуществления запуска двигателя ECM в диапазоне сигналов CKP между 97° и 65°отслеживает текущие обороты двигателя и на основании анализа получаемой информации выставляет угол опережения и скважность импульса зажигания соответствующими текущим потребностям двигателя. Управление оборотами холостого хода ECM обеспечивает стабильность оборотов холостого хода двигателя путем активации пластинчатого электромагнитного клапана IAC управляющего перепусканием дополнительного воздуха в обход корпуса дросселя. В качестве исходной информации ECM использует данные поставляемые датчиками положения коленчатого вала (CKP), температуры охлаждающей жидкости (ECT), давления, а также датчика-выключателя активации кондиционера воздуха, что позволяет осуществлять полный контроль за оборотами двигателя при любой текущей нагрузке.В качестве управляющего элемента клапана IAC используется электромагнит, реагирующий на уровень скважности управляющего периодического сигнала. Чем выше коэффициент заполнения сигнала, выдаваемого модулем управления на электромагнит, тем большую степень открывания поворотной заслонки обеспечивает последний. Расход же дополнительного воздуха прямо пропорционален степени открывания заслонки и оказывает непосредственное влияние на частоту вращения двигателя.
|
Основными задачами устройства является компенсация повышения нагрузки на двигатель при активации К/В или другого энергоемкого потребителя электроэнергии, повышение оборотов холостого хода двигателя в начальный период его прогрева, обеспечение буферного эффекта при быстром закрывании дроссельной заслонки, а также повышение стабильности оборотов двигателя на холостом ходу. Управление функционированием топливного насоса
Опираясь на информацию, поставляемую датчиком положения распределительного вала (CMP), ECM обеспечивает управление функционирование топливного насоса путем включения/выключения его реле. С целью повышения уровня безопасности топливный насос автоматически блокируется при самопроизвольных остановах двигателя при включенном зажигании. Принцип организации управления сформулирован в приведенной выше таблице.Системы снижения токсичности отработавших газовСистема вентиляции картера (PCV)Принцип функционирования системы вентиляции картера (PCV) на примере 6-цилиндрового двигателя
Система PCV служит для снижения эмиссии в атмосферу углеводородных соединений за счет вывода из двигателя картерных газов. К числу основных компонентов системы относятся клапан PCV, герметично закрываемая крышка заливной горловины двигательного масла, воздухозаборник и комплект соединительных вакуумных шлангов. При неполном открывании дроссельной заслонки, содержащиеся в двигателе картерные газы, по специальному шлангу через клапан PCV отводятся во впускной трубопровод за счет значительности глубины создаваемого в нем разрежения. Одновременно в картер двигателя по подсоединенному к крышке головки цилиндров шлангу запускается свежий воздух. При полностью открытой заслонке, когда глубина во впускном трубопроводе не очень велика, часть картерных газов по отдельному шлангу переправляется во впускной воздушный тракт и далее - в корпус дросселя.
Со временем стенки корпуса дросселя начинают покрываться смолянистыми отложениями, в особенности в районе расположения дроссельной заслонки. Ввиду сказанного, следует время от времени производить чистку корпуса дросселя. |
Трехфункциональный каталитический преобразователь (TWC)
Каталитический преобразователь может не входить в стандартную комплектацию моделей 2.0 и 2.5 л, оборудованных OBD Subaru. |
Каталитический преобразователь(и) является компонентом систем снижения токсичности отработавших газов, включен в состав системы выпуска и служит для снижения эмиссии в атмосферу токсичных составляющих. Существует два типа каталитических преобразователей. Обычный окислительный преобразователь позволяет снизить содержание в отработавших газах углеводородов (НС) и монооксида углерода (СО). Трехфункциональный каталитический преобразователь (TWC) дополнительно позволяет сократить эмиссию оксидов азота (NОХ). На всех рассматриваемых в настоящем Руководстве моделях используются трехфункциональные каталитические преобразователи. Базовыми составляющими катализатора являются платина (Pt), родий (Rh) и палладиум (Pd), смесь которых тонким слоем нанесена на имеющую форму овала сотовую конструкцию, либо пористую керамическую основу.
Во избежание необратимого выхода катализатора из строя для заправки оборудованных каталитическим преобразователем моделей следует использовать исключительно неэтилированное топливо! |
Максимальная эффективность функционирования катализатора достигается при определенной концентрации в отработавших газах токсичных составляющих. Требуемый баланс достигается за счет контроля состава воздушно-топливной смеси, который система управления старается постоянно поддерживать вблизи значения, равного стехиометрическому числу, - см. следующий подраздел.Система управления качеством воздушно-топливной смеси
На моделях 2.0 и 2.5 л, оборудованных OBD Subaru, данная система устанавливается только в комплекте с каталитическим преобразователем. |
Система на основании сигналов, непрерывно поступающих докаталитического лямбда-зонда(ов), производит соответствующие корректировки базового значения продолжительности открывания инжекторов с целью поддержания качества воздушно-топливной смеси вблизи стехиометрического значения (14.7 частей воздуха на 1 часть топлива), обеспечивающего оптимальные условия для функционирования трехфункционального каталитического преобразователя (TWC).
Различные базовые значения времени открывания инжекторов предусмотрены для различных оборотов двигателя, текущих нагрузок и количества всасываемого воздуха. |
В системе также предусмотрена интеллектуальная корректировка текущих базовых значений, позволяющая в значительной мере повысить реактивность откликов на происходящие изменения. Система управления зажиганием Управление функционированием системы зажигания осуществляет также ECM, опираясь на данные, поступающие от различных информационных датчиков и датчиков-выключателей. Схема функционирования системы управления зажиганием различных двигателей представлена на иллюстрациях. Схема функционирования системы управления зажиганием 4-цилиндрового двигателя
Принцип функционирования системы EGR
1 — Клапан EGR 2 — ECM 3 — Впускной трубопровод | 4 — Выпускной порт 5 — Левая головка цилиндров |
На основании анализа поступающей информации ECM вычисляет оптимальные значения угла опережения и скважности управляющих импульсов зажигания для любых текущих рабочих параметров двигателя. В своей работе ECM использует программную карту управления по замкнутому контуру, обеспечивающую великолепную реактивность откликов на любые изменения входящих данных. Система рециркуляции отработавших газов (EGR) - только модели 3.0 л Система рециркуляции отработавших газов (EGR) служит для минимизации выброса в атмосферу оксидов азота (NOX). Решение поставленной задачи достигается путем снижения температуры сгорания горючей смеси за счет подмешивания к ней определенного количества отработавших газов двигателя. На соответствующим образом оборудованных моделях организован управляемый ECM контур рециркуляции отработавших газов во впускной трубопровод. Система улавливания топливных испарений (EVAP) Общая информация Система EVAP аккумулирует скапливающиеся в топливном тракте за время стоянки автомобиля испарения и обеспечивает вывод их во впускной тракт для сжигания в процессе нормального функционирования двигателя , предотвращая тем самым загрязнение атмосферы бензиновыми парами. Усовершенствование системы производится непрерывно по мере ужесточения требований предъявляемых к защите окружающей среды. В состав системы входят заполненный активированным углем адсорбер, электромагнитный клапан управления продувкой адсорбера, клапан отсечки топлива (запорный клапан), двухходовой клапан и соединительные линии. Скапливающиеся в баке топливные испарения выводятся в угольный адсорбер по испарительным линиям. Запорный клапан встроен в топливные линии. Управление функционированием клапана продувки адсорбера осуществляет ECM, выбирая наиболее оптимальный для продувки момент, исходя из рабочих параметров двигателя, а также информации, поставляемой датчиками температуры и расхода топлива. Электромагнитный клапан управления давлением включен в испарительную линию топливного бака и служит для контроля давления/разрежения в баке на основании сигналов, выдаваемых на ECM установленным в баке датчиком давления. Клапан отсечки топлива (запорный клапан)Конструкция запорного топливного клапана
1 — К угольному адсорберу В — Клапан открыт | С — Клапан закрыт |
1 — Уплотнитель 2 — Пружина | 3 — Клапан |
1 — Фильтр 2 — Активированный уголь 3 — Пружина А — К электромагнитному клапану управления продувкой | В — От топливного бака С — Воздух |
1 — Фильтр 2 — Активированный уголь А — К электромагнитному клапану управления продувкой | В — От топливного бака С — Воздух |
1 — К адсорберу | В — К впускному трубопроводу/корпусу дросселя |
1 — К адсорберу | В — К корпусу дросселя |
1 — Клапан А — Атмосферное давление | В — К угольному адсорберу С — От топливного бака |
1 — Клапан 2 — Корпус 3 — Крышка 4 — Клапан давления | 5 — Пружина А — К угольному адсорберу В — От топливного бака |
Запорный клапан встроен непосредственно в испарительную трубку крышки топливного бака. Подъем уровня топлива в баке приводит к запиранию отверстия в крышке, оставляя ему единственный выход через испарительную трубку в угольный адсорбер.Крышка заливной горловины топливного бака Встроенный в крышку заливной горловины предохранительный клапан служит для предотвращения образования в баке чрезмерно глубокого разрежения вследствие нарушения проходимости испарительных линий. В нормальных условиях крышка закрывает горловину абсолютно герметично за счет резинового уплотнения, прижимаемого по всему периметру горловины, а также благодаря тому, что клапан (А) остается плотно прижатым пружиной к своему седлу. При возрастании глубины разрежения в баке атмосферное давление отжимает пружину вниз, что приводит к открыванию клапана. В результате давление выравнивается за счет того, что внутрь бака проникает наружный воздух. Угольный адсорбер Угольный адсорбер заполнен активированным углем и служит для временной аккумуляции топливных испарений и продувается по сигналу ECM при открывании специального электромагнитного клапана (см. ниже). Из адсорбера топливные испарения поступают во впускной трубопровод, после чего сжигаются в процессе нормального функционирования двигателя. Конструкция угольного адсорбера представлена на иллюстрациях. Электромагнитный клапан управления продувкой угольного адсорбера Клапан включен в испарительную линию, соединяющую адсорбер с впускным трубопроводом (модели 2.0 и 2.5 л с OBD II)/корпусом дросселя (модели 2.0 л и 2.5 с OBD Subaru и модели 3.0 л) и расположен с нижней стороны трубопровода. Управление продувкой осуществляет ECM, опираясь на данные о текущих эксплуатационных параметрах (температура охлаждающей жидкости, обороты двигателя, скорость движения, и т.п.). Продувка производится при запущенном двигателе, за исключением определенных условий, таких, например, как работа на холостых оборотах. Конструкция клапана показана на иллюстрациях. Двухходовой клапан Двухходовой клапан включен в испарительную линию, соединяющую угольный адсорбер с топливным баком. Конструкция клапана показана на иллюстрациях. Когда давление в баке превышает некоторое установленное значение, развиваемое пружиной усилие, преодолевается и клапан открывается, при этом находящиеся в баке под давлением испарения отводятся в адсорбер, где аккумулируются в порах наполнителя. При опускании давления клапан закрывается, однако воздух, проникающий в систему через входной порт адсорбера, продолжает проникать в бак через маленькое отверстие в торце клапана, предотвращая образование чрезмерного разрежения. Вакуумный тракт Схема прокладки вакуумных линий представлена на иллюстрациях.
Подробная схема прокладки вакуумных линий представлена на ярлыке VECI каждого автомобиля, - в случае разночтений предпочтение следует отдавать информации VECI. |
1 — Регулятор давления 2 — Корпус дросселя 3 —Электромагнитный клапан управления продувкой адсорбера А — Шланги | В — Трубки С —К угольному адсорберу D — Направление вперед по автомобилю |